Analysis of mural cell recruitment to tumor vessels.
نویسندگان
چکیده
BACKGROUND Tumor blood vessels are both structurally and functionally abnormal compared with normal vessels. A limited support of mural cells may contribute to these abnormalities. Here, we characterized mural cell recruitment in 2 mouse tumor models and addressed the question of why tumor vessels fail to recruit a proper coat of mural cells. METHODS AND RESULTS We studied mural cell recruitment to the vasculature of 2 transplantable mouse tumor models, T241 fibrosarcoma and KRIB osteosarcoma. We found that both tumors formed a vessel network with heterogeneous and highly abnormal organization of mural cells. Transplantation of tumors to mice expressing lacZ in mural cells demonstrated that these cells were host-derived. Although tumor vessel endothelium expressed PDGF-B, an embryonic mitogen for mural cells, only very few PDGFRbeta-positive cells were found to be associated with the developing tumor vasculature, suggesting a limited pool of recruitable mural cells. We tested whether exogenous mural cells could be recruited to tumor vessels by injecting mixtures of T241 tumor cells and embryonic mesenchymal cells isolated from mice expressing lacZ in mural cells. In the tumors that arose, lacZ-positive cells were efficiently recruited to the tumor vessels. CONCLUSIONS T241 and KRIB tumors show a similar highly abnormal organization of vessel-associated mural cells. T241 tumor vessels seem highly capable of recruiting exogenously added mural cells. The sparse mural cell coat of tumor vessels may result from a limited pool of mural cells available for recruitment.
منابع مشابه
NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels.
NO has been shown to mediate angiogenesis; however, its role in vessel morphogenesis and maturation is not known. Using intravital microscopy, histological analysis, alpha-smooth muscle actin and chondroitin sulfate proteoglycan 4 staining, microsensor NO measurements, and an NO synthase (NOS) inhibitor, we found that NO mediates mural cell coverage as well as vessel branching and longitudinal ...
متن کاملATVB In Focus Developmental Biology in the Vasculature
Mural cells are essential components of blood vessels and are necessary for normal development, homeostasis, and organ function. Alterations in mural cell density or the stable attachment of mural cells to the endothelium is associated with several human diseases such as diabetic retinopathy, venous malformation, and hereditary stroke. In addition mural cells are implicated in regulating tumor ...
متن کاملDev109124 4513..4525
Low density lipoprotein receptor-related protein 1 (LRP1) is indispensable for embryonic development. Comparing different genetically engineered mouse models, we found that expression of Lrp1 is essential in the embryo proper. Loss of LRP1 leads to lethal vascular defects with lack of proper investment with mural cells of both large and small vessels. We further demonstrate that LRP1 modulates ...
متن کاملDev109124 1..13
Low density lipoprotein receptor-related protein 1 (LRP1) is indispensable for embryonic development. Comparing different genetically engineered mouse models, we found that expression of Lrp1 is essential in the embryo proper. Loss of LRP1 leads to lethal vascular defects with lack of proper investment with mural cells of both large and small vessels. We further demonstrate that LRP1 modulates ...
متن کاملEndothelial Wnt/β-catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression
Endothelial Wnt/β-catenin signaling is necessary for angiogenesis of the central nervous system and blood-brain barrier (BBB) differentiation, but its relevance for glioma vascularization is unknown. In this study, we show that doxycycline-dependent Wnt1 expression in subcutaneous and intracranial mouse glioma models induced endothelial Wnt/β-catenin signaling and led to diminished tumor growth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 105 1 شماره
صفحات -
تاریخ انتشار 2002